Jing Tan

Contact Information	Room 703, Ho Sin-Hang Engineering Building, The Chinese University of Hong Kong, Shatin N.T. Hong Kong	(+852) 9360-4025 jingtan@ie.cuhk.edu.hk	
Research Interests	Computer Vision: Video analysis and understanding, Action and event detection Machine Learning: Representation learning, Deep learning		
Education	Department of Information Engineering, The Chinese University of Hong KongHong Kong SARPh.D. Student in MMLabAug. 2023 – PresentSupervisor: Prof. Dahua LinAug. 2023 – Present		
	Department of Computer Science and Technology, Nanjing University	Nanjing, China	
	Master in MCG Lab	Sept. 2020 – June 2023	
	Supervisor: Prof. Limin Wang		
	Kuang Yaming Honors School, Nanjing University	Nanjing, China	
	B.Sc., Major in Computer Science (GPA 4.44/5, Rank 3/29).	Sept. 2016 – June 2020	
International Study Program in Letters and Science, UC Berkeley		Berkeley, USA	
	Obtained A in COMPSCI 188 and STATC 100.	Aug. 2018 – Dec. 2018	
PUBLICATION	Jing Tan , Yuhong Wang, Gangshan Wu, Limin Wang, Temporal Perceiver: A General Architecture for Generic Boundary Detection, in <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> (T-PAMI), 2023.		
	Jing Tan , Xiaotong Zhao, Xintian Shi, Bin Kang, Limin Wang, PointTAD: Multi-label Temporal Action Detection with Learnable Query Points, in <i>Advances in Neural Information Processing Systems 35</i> (NeurIPS),		

2022. Jing Tan*, Jiaqi Tang*, Limin Wang, Gangshan Wu, Relaxed Transformer Decoders for Direct Action

Jing Tan⁺, Jiaqi Tang⁺, Limin Wang, Gangshan Wu, Relaxed Transformer Decoders for Direct Action Proposal Generation, in *IEEE International Conference on Computer Vision* (**ICCV**), 2021.

HONORS AND	• Outstanding Master Thesis Award (3/226)	Nanjing University	2023
Awards (selected)	Outstanding Graduate of Nanjing University (20%)	Nanjing University	2023
(~)	• National Scholarship (6/226)	Ministry of Education	2022
	• 3rd Place, GEBD-LOVEU Challenge @ CVPR'22	Workshop Committee	2022
	Outstanding Postgraduate Student Award	Nanjing University	2021
	• 1st Prize, Scholarship for Postgraduate Students (20%)	Nanjing University	2020 & 2021
	• 2nd Prize, Academic Outstanding Scholarship for Elite Class	Nanjing University	2017 & 2018

Research	EgoTAD: Exploring Spatial Semantics for Egocentric Temporal Action I	Detection
Experience	Advisor: Prof. Limin Wang	Dec.

Advisor: Prof. Limin Wang

Dec. 2022 - Mar. 2023

- As the first author, proposed a temporal action detection (TAD) framework especially for egocentric videos. The work emphasizes the importance of spatial modeling over sophisticated temporal modeling in egocentric scenario and leverages spatial object semantics with learned key object tokens for accurate egocentric TAD.
- Extensive experiments on Epic Kitchens 100 and Ego4D Memory Queries benchmarks show that EgoTAD achieves superior performance compared to previous methods.

PointTAD: Multi-label Temporal Action Detection with Learnable Query Points.

Dec. 2021 - Jun. 2022

- We study the complex multi-label TAD that requires fine-grained class discrimination and dedicated module to precisely localize co-occurring action instances. As the first author, I presented a sparse, query-based temporal action detector with learnable query points to tackle the concurrent instances and their richer relations in multi-label TAD setup.
- PointTAD streamlines an end-to-end learnable framework taking RGB input only. Extensive experiments
 on MultiTHUMOS and Charades show that PointTAD surpasses all previous methods by a large margin
 under detection-mAP and achieves promising results under segmentation-mAP. The code is available at
 https://github.com/MCG-NJU/PointTAD.

Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection.

July 2021 - Nov. 2021

Sept. 2020 - Mar. 2021

- As the first author, presented a general and efficient architecture for generic boundary detection, namely Temporal Perceiver, which detects temporal boundaries that divide the input videos into taxonomy-free and semantic coherent units and generalizes well to arbitrary generic boundaries.
- Temporal Perceiver achieves state-of-the-art performances on shot-level, event-level and scene-level generic boundary benchmarks, with $6 \times$ faster inference speed and $160 \times$ less FLOPs than previous SOTA. The paper is available at https://arxiv.org/abs/2203.00307.

Relaxed Transformer Decoders for Direct Action Proposal Generation

Advisor: Prof. Limin Wang

Advisor: Prof. Limin Wang

- As the first author, presented a simple and efficient framework (RTD-Net) based on Transformer-alike architecture for direct and sparse action proposal generation, which locates action instances in untrimmed videos with more complete and accurate proposals.
- RTD-Net tackles the essential difference between time and space, with several important improvements on Transformers: boundary-attentive modules for discriminative feature encoding, relaxed matching criteria for optimal training and three-branch head design for accurate and reliable proposal generation.
- RTD-Net outperforms the existing state-of-the-art methods on THUMOS14 dataset and achieved comparable performance on ActivityNetv1.3. The code is available at https://github.com/MCG-NJU/RTD-Action.

Contest Experience	Generic Event Boundary Detection (GEBD) Challenge. LOVEU Workshop & International Challenge @ CVPR'22.	April 2022 - June 2022		
	 We won the third place in the challenge, the submission report is availa Contribution: re-designed the boundary-attentive modules for discrir the Transformer decoders to achieve accurate proposals without den 	ninative representations and adopted		
Internship	Video Algorithm Intern	Beijing, China		
	Platform and Content Group, Tencent	Dec. 2021 - June 2023		
	 Our group provides online and automatic checking services for newly uploaded video content based on deep neural networks. 			
	 Build a sparse, query-based temporal action detector that is able to precisely localize concurrent instances in multi-label videos and egocentric videos. 			
	• This temporal action detector is end-to-end trainable with feature extractor and requires only RGB frame input, which is easy for online deployment and automatic video processing.			
Teaching Experience	Digital Logic Design and Computer Organization Teaching assistant	Nanjing University Mar. 2021 - July 2021		
Course Projects (selected)	NYC Taxi Rides Analysis. STATC100: Principles and Techniques of Data Science.	Berkeley, USA Sept. 2018 - Dec. 2018		
	 Predicted accidents and popular pick-up locations in New York City with data capturing, cleaning and visualization, EDA and feature engineering on NYC taxi rides dataset. 			
	Advanced HTTP server. Competition held during short visit to HKUST	Hong Kong SAR Feb. 2018		
	 Developed an advanced HTTP server that supports media display and multi-thread feature. Won the 2nd place in final evaluation. 			
Skills	• Programming: Python, PyTorch, LaTEX, C++, C,			

• Languages: Mandarin, English (TOFEL 113, R 30, L 29, S 26, W 28)